Machine Learning Full Course – Be taught Machine Studying 10 Hours | Machine Studying Tutorial | Edureka
Warning: Undefined variable $post_id in /home/webpages/lima-city/booktips/wordpress_de-2022-03-17-33f52d/wp-content/themes/fast-press/single.php on line 26
Study , Machine Studying Full Course - Be taught Machine Studying 10 Hours | Machine Studying Tutorial | Edureka , , GwIo3gDZCVQ , https://www.youtube.com/watch?v=GwIo3gDZCVQ , https://i.ytimg.com/vi/GwIo3gDZCVQ/hqdefault.jpg , 2091590 , 5.00 , Machine Learning Engineer Masters Program (Use Code "YOUTUBE20"): ... , 1569141000 , 2019-09-22 10:30:00 , 09:38:32 , UCkw4JCwteGrDHIsyIIKo4tQ , edureka! , 39351 , , [vid_tags] , https://www.youtubepp.com/watch?v=GwIo3gDZCVQ , [ad_2] , [ad_1] , https://www.youtube.com/watch?v=GwIo3gDZCVQ, #Machine #Learning #Full #Learn #Machine #Studying #Hours #Machine #Learning #Tutorial #Edureka [publish_date]
#Machine #Studying #Full #Learn #Machine #Learning #Hours #Machine #Studying #Tutorial #Edureka
Machine Studying Engineer Masters Program (Use Code "YOUTUBE20"): ...
Quelle: [source_domain]
- Mehr zu learn Learning is the physical process of deed new disposition, noesis, behaviors, technique, belief, attitudes, and preferences.[1] The ability to learn is berserk by humanity, animals, and some machines; there is also bear witness for some sort of learning in confident plants.[2] Some education is immediate, spontaneous by a separate event (e.g. being injured by a hot stove), but much skill and noesis put in from recurrent experiences.[3] The changes induced by encyclopedism often last a time period, and it is hard to characterize knowing fabric that seems to be "lost" from that which cannot be retrieved.[4] Human encyclopaedism starts at birth (it might even start before[5] in terms of an embryo's need for both interaction with, and unsusceptibility inside its environment inside the womb.[6]) and continues until death as a result of ongoing interactions 'tween friends and their situation. The world and processes active in eruditeness are designed in many constituted comedian (including informative psychological science, psychophysiology, psychological science, psychological feature sciences, and pedagogy), too as nascent william Claude Dukenfield of noesis (e.g. with a distributed refer in the topic of encyclopaedism from safety events such as incidents/accidents,[7] or in cooperative encyclopaedism well-being systems[8]). Investigate in such fields has led to the recognition of varied sorts of encyclopedism. For good example, learning may occur as a issue of dependance, or classical conditioning, conditioning or as a consequence of more complicated activities such as play, seen only in relatively agile animals.[9][10] Learning may occur unconsciously or without aware knowingness. Encyclopaedism that an aversive event can't be avoided or loose may effect in a shape called educated helplessness.[11] There is inform for human behavioral encyclopedism prenatally, in which dependence has been ascertained as early as 32 weeks into maternity, indicating that the essential anxious arrangement is insufficiently formed and ready for learning and faculty to occur very early on in development.[12] Play has been approached by some theorists as a form of eruditeness. Children experiment with the world, learn the rules, and learn to act through and through play. Lev Vygotsky agrees that play is crucial for children's maturation, since they make signification of their situation through and through action acquisition games. For Vygotsky, even so, play is the first form of eruditeness nomenclature and communication, and the stage where a child started to see rules and symbols.[13] This has led to a view that encyclopedism in organisms is e'er kindred to semiosis,[14] and often associated with representational systems/activity.
Got a question on the topic? Please share it in the comment section below and our experts will answer it for you. For Edureka Machine Learning & AI Masters Course Curriculum, Visit our Website: http://bit.ly/2QixjBC (Use Code "𝐘𝐎𝐔𝐓𝐔𝐁𝐄𝟐𝟎") Here is the video timeline: 2:47 What is Machine Learning?
4:08 AI vs ML vs Deep Learning
5:43 How does Machine Learning works?
6:18 Types of Machine Learning
6:43 Supervised Learning
8:38 Supervised Learning Examples
11:49 Unsupervised Learning
13:54 Unsupervised Learning Examples
16:09 Reinforcement Learning
18:39 Reinforcement Learning Examples
19:34 AI vs Machine Learning vs Deep Learning
22:09 Examples of AI
23:39 Examples of Machine Learning
25:04 What is Deep Learning?
25:54 Example of Deep Learning
27:29 Machine Learning vs Deep Learning
33:49 Jupyter Notebook Tutorial
34:49 Installation
50:24 Machine Learning Tutorial
51:04 Classification Algorithm
51:39 Anomaly Detection Algorithm
52:14 Clustering Algorithm
53:34 Regression Algorithm
54:14 Demo: Iris Dataset
1:12:11 Stats & Probability for Machine Learning
1:16:16 Categories of Data
1:16:36 Qualitative Data
1:17:51 Quantitative Data
1:20:55 What is Statistics?
1:23:25 Statistics Terminologies
1:24:30 Sampling Techniques
1:27:15 Random Sampling
1:28:05 Systematic Sampling
1:28:35 Stratified Sampling
1:29:35 Types of Statistics
1:32:21 Descriptive Statistics
1:37:36 Measures of Spread
1:44:01 Information Gain & Entropy
1:56:08 Confusion Matrix
2:00:53 Probability
2:03:19 Probability Terminologies
2:04:55 Types of Events
2:05:35 Probability of Distribution
2:10:45 Types of Probability
2:11:10 Marginal Probability
2:11:40 Joint Probability
2:12:35 Conditional Probability
2:13:30 Use-Case
2:17:25 Bayes Theorem
2:23:40 Inferential Statistics
2:24:00 Point Estimation
2:26:50 Interval Estimate
2:30:10 Margin of Error
2:34:20 Hypothesis Testing
2:41:25 Supervised Learning Algorithms
2:42:40 Regression
2:44:05 Linear vs Logistic Regression
2:49:55 Understanding Linear Regression Algorithm
3:11:10 Logistic Regression Curve
3:18:34 Titanic Data Analysis
3:58:39 Decision Tree
3:58:59 what is Classification?
4:01:24 Types of Classification
4:08:35 Decision Tree
4:14:20 Decision Tree Terminologies
4:18:05 Entropy
4:44:05 Credit Risk Detection Use-case
4:51:45 Random Forest
5:00:40 Random Forest Use-Cases
5:04:29 Random Forest Algorithm
5:16:44 KNN Algorithm
5:20:09 KNN Algorithm Working
5:27:24 KNN Demo
5:35:05 Naive Bayes
5:40:55 Naive Bayes Working
5:44:25Industrial Use of Naive Bayes
5:50:25 Types of Naive Bayes
5:51:25 Steps involved in Naive Bayes
5:52:05 PIMA Diabetic Test Use Case
6:04:55 Support Vector Machine
6:10:20 Non-Linear SVM
6:12:05 SVM Use-case
6:13:30 k Means Clustering & Association Rule Mining
6:16:33 Types of Clustering
6:17:34 K-Means Clustering
6:17:59 K-Means Working
6:21:54 Pros & Cons of K-Means Clustering
6:23:44 K-Means Demo
6:28:44 Hirechial Clustering
6:31:14 Association Rule Mining
6:34:04 Apriori Algorithm
6:39:19 Apriori Algorithm Demo
6:43:29 Reinforcement Learning
6:46:39 Reinforcement Learning: Counter-Strike Example
6:53:59 Markov's Decision Process
6:58:04 Q-Learning
7:02:39 The Bellman Equation
7:12:14 Transitioning to Q-Learning
7:17:29 Implementing Q-Learning
7:23:33 Machine Learning Projects
7:38:53 Who is a ML Engineer?
7:39:28 ML Engineer Job Trends
7:40:43 ML Engineer Salary Trends
7:42:33 ML Engineer Skills
7:44:08 ML Engineer Job Description
7:45:53 ML Engineer Resume
7:54:48 Machine Learning Interview Questions
Thank you, I'm planning to take informatics as my master degree, this is really beneficial🌈🙏
Can I please get the datasets and codes used in this tutorial
This video is very useful… Can I get the codes….
Can I get data set and code used in video?
When I am loading libraries.I am getting an error like connot import name 'LinearDisciminantAnalysis' from 'sklearn.discriminant_analysis' please tell me what are the prerequisites for loading that libraries
Can I get the datasets and codes used in this video?
Thanks Edureka! This is the best tutorial for machine learning!!! May I have the PPT and code?
First the video is incredible I really liked it keep going the best of the best
And can I get this ppt? And the codes? I will be glad 😊 🙏🌸
Thank you so much Edureka for this course it has made it so easy for someone trying to acquire knowledge about ML. please can I get the data sets and source codes used in this video?
Amazing tutorial for Machine Learning. Can I get the PPT?
Thanks a lot for this course…Can you please share the source code and dataset used in this video.
this is best platform edureka
please shears notebooks & code
Amazing lecture
Detailed explanation. Appreciate you very much for this video. Can you provide the datasets and the codes as well, it would be really helpful.
Do we need to have basic understanding of MATPLOTLIB,PANDAS,NUMPY for ML Engineer ?
nice sir
In section 12 – at 2:00:40 you have mentioned FN and TN are the correct classifications. Is that correct ? I thought TP and FN are correct classifications. Can you clarify ?
@edureka! I can't understand the part from 54:14 Demo: Iris Dataset. What prerequisites do I need. I know the basics of python, but I still don't understand anything.
This compete tutorial is awesome.. .Can u plzzz provide me the datasets??
Great tutorial Team Edureka, very good explanation. Could you please share the datasets and code for this course? That'd be great help.
Error in bayes theorem proof:
Your slide in video at timeline 5:39:53 is in error.
P(A and B) = P(A/B) P(B) not
P(A/B) P(A), as shown by you
Thank you Edureka for this amazing video. Could you please share the code too.
how to get data set